Dynamics of three noncorotating vortices in Bose-Einstein condensates.
نویسندگان
چکیده
In this work we use standard Hamiltonian-system techniques in order to study the dynamics of three vortices with alternating charges in a confined Bose-Einstein condensate. In addition to being motivated by recent experiments, this system offers a natural vehicle for the exploration of the transition of the vortex dynamics from ordered to progressively chaotic behavior. In particular, it possesses two integrals of motion, the energy (which is expressed through the Hamiltonian H) and the angular momentum L of the system. By using the integral of the angular momentum, we reduce the system to a 2-degrees-of-freedom one with L as a parameter and reveal the topology of the phase space through the method of Poincaré surfaces of section. We categorize the various motions that appear in the different regions of the sections and we study the major bifurcations that occur to the families of periodic motions of the system. Finally, we correspond the orbits on the surfaces of section to the real space motion of the vortices in the plane.
منابع مشابه
Dynamics of vortices in weakly interacting Bose-Einstein condensates
We study the dynamics of vortices in ideal and weakly interacting Bose-Einstein condensates using a Ritz minimization method to solve the two-dimensional Gross-Pitaevskii equation. For different initial vortex configurations we calculate the trajectories of the vortices. We find conditions under which a vortex-antivortex pair annihilates and is created again. For the case of three vortices we s...
متن کاملVortices in atomic-molecular Bose–Einstein condensates
The structure and stability of vortices in hybrid atomic-molecular Bose–Einstein condensates is analysed in the framework of a two-component Gross–Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types of topological vortex states are predicted to exist in the coherently coupled two-component condensates even without a trap, and their nontrivial dy...
متن کاملVortex Interaction Dynamics in Trapped Bose-einstein Condensates
Motivated by recent experiments studying the dynamics of configurations bearing a small number of vortices in atomic Bose-Einstein condensates (BECs), we illustrate that such systems can be accurately described by ordinary differential equations (ODEs) incorporating the precession and interaction dynamics of vortices in harmonic traps. This dynamics is tackled in detail at the ODE level, both f...
متن کاملObservation of vortex lattices in Bose-Einstein condensates.
Quantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds. Individual vortices persisted up to 40 seconds. The lattices could be generated over a wide range of rotation frequencies and trap geo...
متن کاملDynamics of rotating Bose-Einstein condensates probed by Bragg scattering
Gaseous Bose-Einstein condensates (BECs) have become an important test bed for studying the dynamics of quantized vortices. In this work we use two-photon Doppler sensitive Bragg scattering to study the rotation of sodium BECs. We analyze the microscopic flow field and present laboratory measurements of the coarse-grained velocity profile. Unlike time-of-flight imaging, Bragg scattering is sens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014